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ABS'FRACT

As part of the international Greenland Sea Project, Woods Hole Oceanographic

Institute and Scripps Institution of Oceanography deployed a six transceiver ocean
acoustic tomography array to monitor ocean ventilation and circulation over the
19SS-89 winter cooling season. A stochastic inverse method computer code which at-
tains a solution by minimizing mean square error is used to perform inversions of the
Greenland Sea tomography data.

A computer simulated ocean is used to evaluate various aspects of system perform-
ance. We first consider the advantages and problems associated with using a ray theory
based algorithm to establish the forward problem for the Greenland Sea tomography

array. Next, we made two adjustments to our inversion code and discuss the effects on

system performance. The first adjustment allows for layers of difI~rent thicknesses ix: the
inverse solution to increase the density of estimates in regions of interest. The second
adjustment allows the estimator to expect variability of the unknown field to decrease

exponentially with depth.
Our results show the ray theory based algorithm is an adequate method of modeling

ray paths in the Greenland Sea, but has limitations. Reliability of ray paths degrades
as launch angles become s.,,llower and if strong gradients and rapidly changing gradi-
ents in sound speed are present in the vicinity of the transceiver elements. We also find
varying the thickness of layers in the solution allows us to examine the more variable
upper ocean in greater detail without increasing computational effort. However, this

adjustment alone has the undesirable side effect of shifting system resolution towards the
lower ocean. This shift in resolution is offset by informing the estimator about the ver-
tical variability distribution of the unknown field. This a priori knowledge is
parameterized by the covariance function of the unknown field. Uncertainty in knowing

the true variability distribution affects model performance. The inverse solution is more
sensitive to underestimating than overestimating the true value of folding depth. The
model is also more sensitive to both underestimation and overestimation at small true

folding depths.
A set of Greenland Sea data between one tranceiver pair was processed by Woods

Hole Oceanographic Institute. Although only three groups of eigenrays are involved,
initial inversion results indicate the estimator detects seasonal changes and synoptic scale

ii'



events occurring at time scales greater than 20 days, however. solutions show wide fluc-
tuations at time scales shorter than 20 days.
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I. INTRODUCTION

A. OCEAN ACOUSTIC TOMOGRAPHY

Tomography is a method to remotely sense interior structures. It uses

electromagnetic, seismic, or sound waves to propagate through and probe relatively

transparent media. For example, x-rays are commonly used in medical computer as-

sisted tomography (CAT) scans and seismic waves induced by surface sources are used

to study the interior of the earth (Backus and Gilbert.1967). Using analagous methods,

Munk and Wunsch (1979) introduced ocean acoustic tomography as a means of moni-

toring mesoscale fluctuations in ocean basins. Sound waves, which are sensitive to

density changes and currents but transit well through the ocean, gather information as

they encounter structures in the ocean interior. The data is received in the form of a

peturbated travel time from a source to a receiver Using inverse techniques. the best

estimate as to what structure could result in the observed data is constructed.

Ocean acoustic tomography has several practical advantages over conventional

hydrographic study techniques. as cited by Chiu ei al. (19S7). The monitoring system

can be established as a semipermanent, continuous observing system which is not greatly

affected by weather. It has high temporal resolution and can cover an extensive volume

of ocean simultaneously with only a few moorings, which reduces deployment and

maintenance costs. Another advantage stated by Munk and Wunsch (1979) is that the
amount of additional information gained by each additional mooring increases more

rapidly than that gained by additional "spot" measurements since each mooring sets up

distinct new paths to each of the previously set moorings. The gain in spot measure-
ments is more or less linear with the number of instruments deployed.

Ocean acoustic tomography has been successfully demonstrated in a variety of ap-

plications since its introduction. Some examples include mapping mesocale midocean

eddy fields (Cornuelle ei al., 1985), analysis of planetary waves (Chiu el a1.,19S7),

studying of ocean currents (DeFerrari ei al., 1986), and surface wave analysis (Lynch et

al..19S7 ). It has also been chosen as a monitoring tool as part of the Greenland Sea

Project. Its application in the Greenland Sea is the impetus for this thesis.

The Greenland Sea is a well known contributor to world ocean ventilation. Several

conceptual theories have been developed to describe the process. but direct observations

of ventilation are scarce. The Greenland Sea Project was put forward by the Arctic



Ocean Sciences Board to gain understanding of the processes relevant to deep con-

vection (M eincke.19S9).

B. THE GREENLAND SEA PRO.JECT

The Greenland Sea Project (GSP) is a five year (1987-1992). international scientific

study to understand the large scale, long term interactions of air, sea, and ice in the

Greenland Sea. The five key elements of the GSP are: (1) a study of air-sea-ice inter-

action. (2) a study of ocean ventilation. (3) a study of ocean circulation and mixing, (4)

a study of atmospheric energetics. and (5) a study of biological processes. The role of

ocean acoustic tomography is to assist in the studies of ocean ventilation and circu-

lation. The array of transceiver moorings is designed to measure changes in the inte-

grated properties of the Greenland Sea gyre through a winter cooling season and may

also provide valuable information in measuring the response of the wind driven gyre to

changes in the curl of the wind stress (Greenland Sea Science Planning Group. 19S6}.

A six transceiver array was successfully deployed in the Greenland Sea during

September-October. 1988. Figure 1 depicts the planned deployment area and geometry

of the array. The moorings were shifted slightly from their original planned location to

accormnodate for the rough bathymetry found at the original Mooring 3 site. Mooring

2 was redeployed due to leakage of some 0-ring seals. The redeployed mooring is des-

ignated here as Mooring 2a. The geodic coordinates of the moorings, the source depths,

and the receiver depths are given in Table 1. (Worchester and Howe, 1989).

C. THESIS OBJECTIVES

There are three basic objectives of this thesis. The first is to discuss the advantages

and problems of predicting ray paths between array transceivers using an algoritm based

on ray theory. The Greenland Sea offers an acoustic environment which, in conjunction

with the array geometry, makes ray path deterination challenging to model. Accurate

ray path prediction is an essential element of establishing the "forward" problem.

Chapter I1I contains our discussion on this topic.

The second objective is to develop an inversion code appropriate for application to

Greenland Sea tomography data. We begin with an inversion code originated by Chiu

and modified by Kao (1989). The code. or estimator, treats the ocean as a volume which

has been subdivided into discrete boxes. The boxes have equal horizontal dimensions

and the vertical layers of the ocean are equally spaced. An estimate of the unknown

variable is calculated for each box. The estimator also treats the ocean as a statistically
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Table I. TRANSCEIVER LOCATIONS

Mooring Lat-Long Position X-Y Position (ki) Source Receiver
Zn LDepth (m' Depth (in

1 75L'58.0S'.Y.001050.00'11 '  154.790 220.317 99.7 150.4

2 75003.69'.\,000040....E 224.683 119.080 94.0 144.7

2a 75°03.88'.V.000°3S.20'E 223.715 119.491 97.4 148.1

3 ','09.38'A.001152.90o'1 148.972 18.146 96.0 146.7

4 74028.9o'.O;0547.3Y' 11  33.27o 60.958 94.6 117.7

5 7...4.27'.\..06c0 7./0'I 34.547 182.902 101.5 124.6

6 75c03.0.,.\.0(,2oS.((0 If 1210.000 120.000 92.5 143.2

homogeneous volume. Therefore it expects variability (RMS values of the unknown

variable) in any region of the ocean to be the same.

We have made two fundamental adjustments to the inversion code and discuss how

they effect system performance. Our first adjustment is to vary the layer thickness so

that there is a Greater density of boxes in the region of interest. This adjustment allows

for more detail in the region of interest without increasing the computational effort.

Our second adjustment tells the estimator to expect a depth dependent variability dis-

tribution of the unknown variable. In this way. the estimator produces solutions which

are more realistic statistically. The eflects of the adjustments on system performance is

evaluated by conducting inversions on computer simulated oceans with known statistical

parameters. The results of these studies are also contained in Chapter III.

For convenience in coding. we use a Cartesian coordinate system. Based on ranges

computed for the \VGSS4 spheroid (Worchester and Howe, 1989). we converted the

latitude and longitude positions to an XY plane which closely approximates the geodic

orientation. The plane is 240 km by 240 km and centered on Mooring 6. The XY co-

ordinates are included in Table 1. Though there is some slight distortion in the overall

shape of the array, the error between the geodic ranges and the model ranges is less than

15 meters along each path. as shown in Table 2 below.

4



Table 2. MOORING RANGES (KM) AND RANGE ERRORS (M): Ranges
(above diagonal) are based on the \VGS84 spheroid, range errors (below
diagonal) are XY ranges minus spheroid ranges.

Mooring 1 2 2a 3 4 5 6

1 0 123.033 122.120 202.258 200.405 125.922 106.179

2 -13 0 1.039 126.177 200.057 200.576 104.701

2a 13 13 0 125.927 199.232 199.500 103.706

3 -3 -3 -1 0 123.367 200.594 105.896

4 1 -14 2 0 121.947 104.921

8 .14 13 -1 4 0 106.109

6 -1 -14 10 -2 -2 -1 0

Our third objective is to test the inversion code with observed data derived from the

Greenland Sea tomographic array. The studies on system performance discussed earlier

are conducted using computer simulated oceans with known characteristics. However,

the simulated oceans are limited in the scope to which they can minmick the actual

conditions found in the Greenland Sea. Usine actual Greenland Sea travel time data is

the only way to determine if the model response will be realistic. Currently there is a set

of data derived from signals transmitted between Mooring 4 and Mooring 5 available for

input into our model. The data set was processed by Woods Hole Oceanographic In-

stitute (WHOI). Though this will not enable us to form significant conclusions about

the array site from such a small data base, ingesting real data into our model is helpful

in preparing the inversion code for the complete data set when it becomes available.

Our results are discussed in Chapter IV.

To complete our study, we provide the following information. In Chapter I1, we

present an overview of the basis on which our system is developed. Here, the math-

ematical foundation of the tomographic "fonvard" and "inverse" problems is discussed.

Then in Chapter V. we summarize our final conclusions and make recommendations for

future improvements related to this work.



II. OVERVIEW OF ACOUSTIC TOMOGRAPHY PRINCIPLES

In general, the application of tomogrgaphy to monitoring the ocean interior is done

in two parts. In the "forward" problem, we establish a model describing the physical
relationship between the observed data and the unknown variables which are to be esti-
mated. We will cast the forward problem as a Fredholm Integral Equation of the First
Kind in the form

d=fa gj(s)fls)ds + el i (2.1)
path

where d, is the data accumulated along the ill path. g,(s) is the data kernel which contains
the physics and operates on the unknown. fis) is the unknown structure which is to be
estimated, and c, is the experimental noise accumulated along the i path.

The "inverse" problem is to determine a solution to the unknown structure which fits

the data. An undetermined problem. one generally finds many solutions that fit the data
and must choose an optimal solution based on some objective criteria. For the
Greenland Sea transceiver array. the observed data are travel times of sound energy
along reciprocal acoustic multipaths which "connect" sources and receivers. From these
data, we can estimate both sound speed perturbations with respect to a reference ocean

(density tomography), and ocean currents (current tomography).

A. THE FORWARD PROBLEM
Sound propagation in the ocean is a function of temperature, pressure, and salinity

as well as a function of the current field. For the forward problem, we need to determine

the acoustic multipaths which sound energy follows from source to receiver. To model
these "eigenrays", we use an algorithm based on ray theory. Ray theory provides a
simple physical description of the acoustic multipaths and the modeling equations are

straightforward. We start with the eikonal equation,

I V((xjy,z) 12 = n(xvz)2  (2.2)

where 4 is the acoustic phase defining a wave front and n is the index of refraction.
Following the example of Ziomek (1985). we neglect horizontal refraction so that the

predictcd ray paths lie on a vertical plane passing through the source and receiver.

6



Following the derivation used by Kao (1989). and treating the reference ocean as a

motionless medium, we arrive at the key equation for modeling ray paths in the

Greenland Sea.

±fR zo  - dR (2.3)

where z is the depth of the ray at range R, 0 is the ray path angle with respect to the

horizontal, and the subscript o indicates conditions at the acoustic source.

The speed of the wave front through the true ocean is affected by both the sound

speed and current structure along the path. We express this as

d _ c(x'v.,.t) + V((xv.z,t) • . (2.4)dT

where c is sound speed. V is the ocean current field, and i is a unit vector tangent to the

ray path. s . and pointed in the direction of sound energy propagation. From Equation

(2.4). we can determine the sound travel time along an eigenray path.

T = .. ds (2.5)Ct'a\ c+

We further separate c into the sum of sound speed in a reference ocean and sound speed

perturbations with respect to this reference,

c = cO + 6c (2.6)

Travel time can also be separated into the sum of travel time along an eigenray in

a reference ocean and the perturbation in travel time due to effects in the ocean not re-

presented by the reference conditions.

T= T, + 6 T (2.7)

Substituting Equations (2.6) and (2.7) into Equation (2.5). we ha~e

7



T ,+16T=[ (- )d (2.8)
path 1 + 'SC + v

Co

Under the nld restriction that I bc + ' • . I < < I cI, we can neglect the higher order

terms of a Taylor series expansion of the term in parenthesis and arrive at

,A
T +5 [ 7'6+-Sd (2.9)

Ipath

In density tomography, which uses one way travel times, the effect of ocean currents

is much smaller than the effects of temperature. pressure, and salinity. i.e.

< < . Since we have defined TO= CI ds, Equation (2.9) reduces to the

linearized form

6 T= F(')ds (2.1(P)

In current tomography, we must consider reciprocal paths. The effects of temper-.

ature. pressure, and salinity are the same in either direction whereas the effects of the

current field will be opposite under these circumstances. Therefore, imbedded informa-

tion about the currents may be extracted by subtracting the two reciprocal path

equations.

Consider the the travel time for sound along a path indicated by =2 calculated from

Equation (2.9).

T0 + = +(l Ac--
path (2.O1)

and for its reciprocal path indicated by =.



T+S7. = - ± , (2.1 2)
fpatni 

)dccsG

Since V " , =- V,* at all points on the paths. subtracting Equation (2.12) from

Equation (2.11 yields a linearized expression for current,

T:* -- CS 7'( 2 ) SV. )ds (2.13)

Thus far, the forvard model has treated travel time data only as noise free meas-

urements. In practice. experimental noise corrupts the signal and contributes to the er-

ror in the estimates. Factors such as tidal forces which cause displacement oftransceiver

elements and internal waves are sources of experimental noise. Signal processing is used

to minimize these effects. Details of signal processing techniques used for ocean

tomography can be found in Spindel (19S5).

Including experimental noise in our model, we now have expressions which relate

the unknown variables to practical. observable data. For density tomography. we have

/6T=jf ( (34 -)udS C& ~ (2.14)
'ath

and for current tomography, we have

( ) £ c
-7-L S(2.15)

path

The similarity of the data kernels, which contain the physics of the model, shows the

close relationship bet\cen the two areas of tomography.

9



B. THE INVERSE PROBLEM

Once the forward problem has been established, we search for unknown structures

which fit the observed data. Since we cannot sufficiently sample the ocean to have a

complete set of independent data. the problem is underdetermined, with an infinite

number of possible solutions that will fit the data. To reach a unique solution, we must

devise an estimator which imposes additional constraints on the system. Choosing an

estimator based on the Gauss-Markoff Theorem allows the use of statistical information

to evaluate system performance.

1. The Estimator

We approximate the continuous system in a discretized form. This allows us to

cast the problem into matrix algebra for straightforward implementation of the estimator

in a numerical computer. Applying the Gauss-Markoff Theorem (Liebelt,1967) and

following the works of Cornuelle rt al. (1985) and Chiu et al. (19S7), our criterion for the

"best" solution of the unknown structure is one that is linear with the data and has

minimal mean square error with respect to the true solution. Additional contraints on

the system are imposed through the specification of an a priori covariance maitrix.

Posing the forward problem in discrctizcd form. we have

j1= A f+ , (2.16)

where the rn dimensional column vector, d. contains the data derived from travel times

of in resolvable eigenrays. The n dimensional column vcctor,f. is the unknown structure

to be estimated. The ocean has been divided into n discrete boxes, within each the un-

known variable. 6c or V. is assumed to be constant. In our treatment, the discrete boxes

have equal dimensions in the horizontal plane, forniing squares. However, the vertical

dimension varies with depth, forming unifbrm layers of different thicknesses. The ex-

perimental noise. e, which contaminates the data along each ray path, is also ni dimen-

sional. The linear operator matrix, A. has rn x n dimensions. The rows of the operator

matrix are analagous to a set of data kernels of the continuous case. They contain the

physics which relates the data and unknown fields.

From the Gauss-Markoff Theorem, the optimal estimate of an unknown pa-

rameter can be calculated from

C, A %CI" L_ (2.17)

where the covariance matrix of the total error. t. of the estimate is

10



C, = Cf- (CIA )(ACj A T + C,)-(A (2.18)

1he diagonal elements of C, are the minimum mean square errors of the estimate. C, is
the covariance matrix of experimental noise, which we assume is known, and C, is the

covariance matrix of the unknown variable. It is through C, that we insert a priori in-

formation in the estimator. To reach an optimal solution, we assume the unknown fields

have Gaussian distributions and are statistically homogeneous throughout each layer.

We express these conditions through a covariance function, Cf , which is cast into matrix

form as Cf. The covariance function is expressed as,

C(f= CO(x',', z')o(x"',y, z") exp - [ + + (2.19)

where the separation of two points in each dimension is given as

&Y = x" - x'. AY V -y', and A: =z" - :', respectively. The dimensional correlational

lengths. L.. L. and L_ tell the estimator how well information at one point relates to

surrounding points in the system. It is optimal to use the true correlation lengths, but

the true values may not be well known. To avoid overconstraining the system, i.e. to

avoid correlating information which is not truly correlated, we can use conservatively

small values of L,. L. and L,. We characterize the vertical variability distribution of the

unknown field through a. which is treated by the estimator as an exponentially decaying

function with depth, parameterized by a surface value and an e -folding depth. In each

layer, an average value based on this curve is used. With a priori knowledge in place,

the inversion code can generate a unique least mean square error solution from observed

data as well as error bars and s, stem resolution measures.

2. Measurement of Error

The total error in the estimate can be cast as two statistically independent terms:

bias, k = <f> -f. and random error, A? = - <f >. The covariance of error is simply

the sum of its components,

Ct= <bbr>+Ca (2.20)

%%here

Ca C ArC ' AC, (2.21)

11



Following Chiu et al. (19S7) and Wiggins (1972). we apply a powerful tool called singular
value decomposition of matrices. The linear operator matrix. A, is scaled and factorized

into a diagonal matrix of eigenvalues, A, and two matrices of associated eigenvectors.

U and V such that.

Cf 2 AC .=UAVr  (2.22)

Each diagonal element of A. .,. has two associated eigenvectors, u, and £,, which are the

iP colunms of U and V, respectively. The eigenvectors within U and V are sets of

orthogonal basis vectors in the data space and unknown parameter space, respectively.

Applying matrix decomposition as in Chiu et al. (1987), we now write the

covariances of total error and random error as

C, = CfIl - VA(I + A2 F AV] c.,2  (2.23)

and

C,=C2I N,7 I

2 + A)-'A2( + A")-'VJ c 2  (2.24)

where I is an n x n identity matrix. We derive an expression for bias by taking the ex-

treme case where all eigenvalues approach infinity so that C.- aproaches zero. From

Equation (2.23) we have,

I I

< EL T > C f(- _ Vr), (2.25)

3. Measurement of Resolution

Besides a measure of error, we also evaluate system performance through its

ability to resolve ocean features. Continuing with singular value decomposition of ma-

trices, we obtain an expression for the optimal estimate in terms of eigenvalues,

k

= 1 T 26)

i= 1

where k is the number of non-zero cigenvalues. Equation (2.26) shows tile solution is a
weighted sum of eigenvectors where the cigenvalues control the weighting. The ex-

12



pression in parenthesis represents the components of the data vector which has been

expanded into a linear combination of weighted eigenvectors. As demonstrated by Chiu

ei al. (19S'). the ) values are analagous to signal-to-noise ratios for each component

of the expanded data vector. For ;- > > 1, signal dominates noise in that particular

component, and the reverse is true for ).1 < < I. From Equation (2.26) we see that the

effect of noise on the estimate is minimized by downweighting those components asso-

ciated with high noise levels.

We now define the resolution matrix, R, which has n x n dimensions,

R -VA(I + A 2)-lAVT (2.27)

The i row of R is the resolution kernel of the ill box in the discretized ocean. Substi-

tuting into Equation (2.23). we get

1 1

Ideally. if the resolution matrix is an identity matrix, the system has no error. In the

liit, as we approach the continuous case with complete and noise free data, the resol-

ution kernels approach delta functions and the system would be perfectly resolved. In

practice, however. the resolution kernels have side lobes and amplitudes less than unity

along the diagonal. In Equation (2.2S). the relationship between resolution and error is

linear. Therefore, we may use the resolution kernel peak value as a simple measure of

local resolution.

Another measure of system performance is a measure of the size of features that

can be adequately resolved by the system. Chiu et al. (1987) has defincd scale meas-

urements called the horizontal and vertical minimum resolution lengths, 1t and V, re-

spectively. Each represents the distance in the respective dimension within which one

half of the total energy of the iV resolution kernel is confined under noise free conditions.

They are calculated from the following expressions,

2ri W", Y", Z"
H (x ', z') 2 A x2 -- (2.29)

1 ' 2 (.. .. ,Z"

ll3(x'.'. z') = 2IZ y2 ') (x , ".)

13



l'xv' ' = 2 A 2  " "(2. 31)
" Ei

where

E= 2 (2.32)

J= 1

is the total energy of the i l resolution kernel and ri is the energy contained in theyj' el-
ement of the j1 resolution kernel. In three dimensional space, the center of the box as-

sociated with the irl diagonal element of R is located at (x',y', z'), and the center of the

box associated with the j 'L element of the P' resolution kernel is located at (x", .", z") .

Thus, Ax. Av. and A: are the separation distances in each dimension, respectively, be-

tween these locations. A significant strength of measuring system performance this way

is that the RMS error and resolution do not depend on the available data. Instead, error

and resolution can be deternined once the eicenray paths through the discretized ocean

are determined and the covariances of the unknown variable and random error are

known.

14



III. EIGENRAY PREDICTION AND INVERSION CODE

DEVELOPMENT

In this chapter, we first discuss cigenray path prediction for the Greenland Sea array.

Eigenrays are paths of acoustic signals extcnding between sources and receivers. Accu-

rate cigenray paths are needed to establish the forward problem. Errors in ray posi-

tioning and travel time calculations introduce errors to the inverse solution. We then

discuss the modifications that have been made to the inversion code and their effects on

system performance.

A. EIGENRAY PATH PREDICTION

The construction of the linear operator is dependent on ray path information.

Knowing the amount of path length a ray has in each box is essential for the estimator

to deternne the distribution of unknown structures. Collectively, these structures result

in a travel time perturbation datum as an acoustic signal passes from source to receiver.

We use an algorithm based on ray theory to predict eigenray paths since ray theory

provides a simple physical description and the equations used in modeling are straight-

forward.

The ray trace algorithm is a fourth order Runge-Kutta numerical integration tech-

nique applied to Equation (2.4. The depth of each ray is calculated at 1000 range steps.

Details of the fourth order Runee-Kutta methoJ are given in Gerald (1989). As the ray

reaches significant points where the. vertical sense of motion reverses. i.e. turning points

and surface reflections, the sign of the second term of Equation (3.1) reverses. (Since

we have not included bottom intereacting eigenrays in our fonvard problem. we will not

consider bottom reflections in our discussion here.) The Runge-Kutta method cannot

be applied through a step containing a significant point. Therefore, in the vicinity of a

turning point or a surface reflection. we apply a method which assumes a locally con-

stant sound speed gradient at depths near the significant point. Under constant gradient

conditions, the ray path is circular. From Ugincius(1970), we have an expression for

curvature of the ray path.

K [-- ,.- cos 0)+ g.(2 cos Ol - 1)] (3.1)
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where gc is the sound speed gradient and g, is the gradient of the medium speed. The

radius of curvature. .72. is just the reciprocal of"K . Since we use a motionless reference

ocean in the forward problem, the expression for the radius of curvature simplifics to

g, C (3.2)
g' Cos 6

which shows , is inversely related to the sound speed gradient with smaller radii re-
sulting from stronger gradients. In turning point cases, the ray is projected through the

step containing the point at a constant - , then the Runge-Kutta integration continues.

In surface reflection cases, the ray is projected to the surface and continues downward
at the same -9, however, for the downward path, the center of the circle for R is sym-

metrically relocated about a vertical line extended through the point of reflection. As in

the turning point case. the Runce-Kutta integration continues at the completion of the

step until the next significant point is reached. Figure 2 shows examples of ray tracing
through steps containing significant points.

To establish the forward problem. a reference ocean must be chosen. The associated
sound speed profile needs to closely approximate the true conditions expected in the

Greenland Sea so that model predicted rays can be associated with the data from the

tomographic array. When the transceiver moorings were deployed, sound speed profiles

were generated at each site from CTD data. Tihe profiles indicate a thin, warm layer of

relatively fresh water lies above a sharp density gradient. The sharp gradient extends

20-50 m below the top layer. Below the gradient, the water column approaches adiabatic

conditions at 500-10O il. and is essentially adiabatic below 1000 m. For simplicity in

modeline. we treat the sound speed profile as a function of depth only. The refierence

profile is based on a profile taken near the center of the array. The profile was taken

at the beginning of the data collection period on yearday 264 near Mooring 6 and is

shown in Figure 3. Yearday I is defined as 01 Jan 88 throughout this work. The pres-

ence of the sharp and rapidly changing gradients in this profile near the surface in con-

junction with the source and receiver locations proves to be challenging for our ray

tracing algorithm.

Under certain circumstances, small differences in sound speed profiles can result in

important output differences from our ray tracing algorithm. The top 40 meters of two

similar profiles with slightly difrerent layer depths are shown in Figure 4. From 40 me-

ters to the bottom at 3000 meters. the profiles are identical. Either profile is represen-

tative of the conditions near Mooring 6. Wc have depicted the deeper laver ()I.) case

16
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as a possible result of entrainment of five meters of the sharp gradient found in the

shallower laver (SL) case by mechanical means.

Typically. eigenrays occur in bundles of four distinct rays due to the near surface

location of the tranceiver elements and near half' channel conditions of the Greenland

Sea. Two rays in the bundle are launched downward within a few tenths of a degree of

each other. The deeper ray arrives at the receiver from below while the shallower ray

reflects off the surface just prior to reaching the receiver, then arrives from above. The

other two rays in the bundle are launched upward at nearly the same magnitude launch

angle as the downward rays. Again, the ray launched at the steeper angle arrives from

below while the shallower ray reflects just before the receiver and arrives from above.

Since the magnitudes of the receiving angles are nearly the same for all four rays and the

bundles are several degrees apart, the bundles are identified by a nominal receiving an-

gles. To identify ray paths as eigenrays. our algorithm uses a tolerance of ± 100 meters

vertical displacement from the receiver as a threshold. This threshold usually allows us

to identit" all four eigenravs at some nominal receiving angle using 0.1 ° separation in

launch angle.

Eigenray paths between Mooring 4 and Mooring 5 with launch angles + 0 are

shown in Figure 5 where 7' < 0 _ 1 °4'. Figure 5a shows paths based on the DL profile.

The SL case is shown in Figure Sb. With only a Lye meter difference in laver depth,

several of the eigenrays predicted for the DL case are not predicted for the SL case. The

rays of the SL case reach the top layer at lower angles and continue in the layer for

longer ranges before returning to the lower ocean. The rays of the DL case reach the

surface layer at higher angles and have less path in the high speed water, which results

in a significantly different path from the SL case. Rays leaving a source at the same

launch angle. 0 - -9.03', in the two different environments are are shown in Figure Sc.

In the DL case. the ray is projected to pass less than 100 m from the receiver and is

considered to be an ceigenray. In the SL case, a ray with the same launch angle is

projected below the receiver by over 200 meters.

The selection of predicted eigenray paths used for the inversion of data from the

Greenland Sea depends on which paths best match the signal processing results of the

array data. The data we have received for paths between Mooring 4 and Mooring 5

indicate, there are four distinct paths at a nominal receiving angle of_ 130 , four paths

at 4- 10', and the slowest arrival which occurs near 0° . Therefbre we have chosen to

include the eight steepest eigenray s predicted in the DL case for our inversion of

Greenland Sea data. These rays are at nominal angles that best match the true ocean
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data. In Chapter IN', we will continue our discussion of thc inversion of data from the

deployed array.

The presence of strong and rapidly changing gradients in our reccrciicc sound speed
profile causes another problem for our ray tracing algorithmn. At relatively shallow

launch angles, typically wvith 0 between ± .5', the algorithmn fails while projecting the ray

through a turning point iin thc strong. near surface gradient. The exact cause of failure

needs to be fully investigated, but a preliminary look indicates a higher degree of nu-

nierical accuracy is required and ray behavior in the vicinity of rapidly changing gradi-
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ents is not accurately depicted. Based on these results, we can expect the accuracy of

the ray tracing output to degrade at shallower launch angles, in the presence of high

sound speed gradients. and in the presence of rapidly changing gradients.

In conducting our studies involving the entire array, we select 101 eigenrays along

the 15 paths between moorings shown in Figure 6. The geometry of the array results in

three general types of ray patterns: 1) Short paths between outer transceivers, 2) long
paths between outer tranceivers. and 3) paths between the outer tranceivers and the

center transceiver. An example of each is provided in Figure 7.

More eigenra,,s were predicted. but not used for three reasons. First, we have less

confidence in the accuracy of ray traces of shallow eigenravs. Also, initial results indi-

cate that distinct travel time arrivals for shallower ray paths may not be available, and

finally, we feel using these 101 cigenrays in our 5(0 box discretized ocean model is suf-

ficient to determine sensitivitv effects without taxing the limits of the nicrocomputer

used to conduct the experiments.

B. VERTICAL LAYERS AND RMS VARIABILITY DISTRIBUTION

The estimator arrives at a more realistic solution if a priori information guides it

towards a statistically sensible solution. Since we generally expect to find more strongly

defined signatures of the unknown structures in the upper portion of the ocean volume,

we wish to focus the resolving capability of the estimator in this region. To accomplish

this. we make two adjustments to the inversion code. We vary the thickness of the ver-

tical lavers rather than using equally spaced layers and we describe the vertical variability
distribution of unknown variable to the estimator through the variable's covariance

matrix. Varying the thickness of layers allows us to use more boxes of smaller size to

describe the region of greater variability without increasing the number of discrete boxes.

Thus, the computational effort to generate a solution is not significantly affected.
To show the effects of our adjustments on model performance, we use an ocean

volume which is 240 km x 240 km in the horizontal, and 3 km deep. The horizontal di-

mensions are evenly divided into ten 24 km segments. There are five vertical layers.
Starting at the surface. the layers are 100 m, 200 m. 450 m, 750 m. and 1500 m thick.

respectively. Because of the uneven vertical spacing, the lower boxes generally contain
a larger portion of eigenray paths than if the model used evenly spaced layers. As a re-

sult. the estimator places greater weight on the lower boxes when generating solutions.

Figure 8 depicts the resolution kernel peak values along a vertical slice using variable

thickness lax ers (N-11.). Figure 9 shows the resolution kernel peak values for an equally
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spaced (EQS) discretized ocean having layers of 600 ni each. Both cases use the same
eigenray paths and the slices are taken parallel to the y-axis along the seventh increment
in x, that is for 144km < x :5 168kmi (see Figure 6). Thcse slices essentially parallel the
ray paths between Mooring I and Mooring 3. Both estimators assume a constant RNIS
sound speed perturbation equal to 2 ms throughout the ocean.

The resolution kernel peak values are a measure of the resolving capability of the
estimator at a particular location. They reflect the way the estimator views the data
collection process as an acoustic signal travels along an eigenray path. In the EQS ap.
proach, the estimator assumes that a greatcr portion of the signal was accumulated
above 1000 m since most of the eigenray paths are found in this region, however, this
approach uses fewer boxes to describe the structure of the upper ocean. The VIL ap-
proach, in contrast, uses more boxes to describe the upper region and thus gives more
detail on the solution there. I lowever, the V 1. approach also shifts resolution towards
the lower ocean where the system has long paths passing through the thick lowest layer
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of boxes. The increased detail oil syste) performnance in the upper occan and the in-

creased number of estimated points provided by using smaller boxes are characteristics
of the VI approach which we wish to exploit since we expect greater variability in this

region. At the same time, we wish to limit the effect of shifting system resolution to-

wards the lowcr occan.

In the oceans described above, the estimators do not expect greater variability in the

unknown field in any particular region. 'I his allows the estimator the freedom to gen-
erate solutions which show features of unusually high intensity in regions where we re-
alistically do not expect them. This occurs if'the solution meets the requirements of the

estimator, that is, it fits the data and provides the least mean square error. We can in-
form the estimator to anticipate greater RMS values of the unknown field in the upper

ocean through -the covariance of the estimate. In this way the estimator expects little

travel time perturbation will accumulate in the acoustic wave as it passes through the
deeper ocean layers and greater variability is encountered in the upper regions. As a
result, the resolution kernel peak values show an upward shift in model resolution, ofr-

setting the downward shift caused by varying the thickness of layers. In Figure 10, we
show a vertical slice of the results of using the VTI. approach with a \ertical dependent

variability function. The vertical slice is the same as that used in lFigures 8 and 9. In

our example, the RM S sound speed perturbation is modeled as an cxponentially decay-
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ing function with depth. An average valuIC is then calculated for each layer. For the

example shown in Figure 10, we have characterized tile function by a surface RMS value

of 6 in's and an e-folding depth of 1000 n. I lhe average value for the entire ocean using

this function is 1.9 ns, which closely approximates the 2 m,'s RMS (5c used for the ex-

ample shown in Figure 9.

Though we show an improvement in resolution in the upper region of the ocean, it

does not come without cost. As we improve resolution in a region, we also allow more

random noise to pass through the estimator. The effect can be seen in the standard de-

viation of the estimate, and thus a less reliable solution. The balance of higher resol-

ution and lower random error is a choice which must be decided on the basis of

resolvable eigenrays paths, array geometry, and the amount of experimcntal noise that

can be expected. Generally, we wish to increase system resolution with a minimal in-

crease in standard deviation of the estimlate. Figure I I shows the associated upward

shift in standard deviation of the estimate corresponding to an upward shift in system

resolution. The RMS c distribution used for the examples shown in Figures I la and

SlIb are the same as that used for examples shown in Figures 9 and 10, respecti\ely.

Typically, bias tends to dominate the total error of the system and the increase in ran-

dom error is less important.
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In our miodefing, of the Grecnland Sea. we as-ulne thc variability of sound speed

perturbations and currents decrcasc exponentially with depthl. though cach variable inay

be parametriicd bya cifeet folding depth. Reii-onable surfacc RN! S jSc values may
bc estimated from sca surface tempcratuIe mearurcments derived firom satellite data and

ship observations. Surface current variability umax be cstimnated from drifting buoyv and

CID) stations at the array moorings. SinIce sur1face VaIlues may be more reliably deter-

mined, the focus of our sensitivity study is placed onl thec fect of uncertainty in sub-

surface variability. I he computer simlated ocean onl which inversions were performed

had a surface RM!S t3c of 6 in s arid a tblding depth equal to 1000 Il. The estimator is

provided with tile s.1me1 surfkCc Valuc and tOen we compare model periformance using

folding depths of 500 m, 1000 m,. and 3000 mn. A simnilar sensitivity study is conducted

in current tomography. 11w surface RN! S currenC~t for the computer generated ocean and

tile estimator is 10 cm s. The ocean war, generated using a folding depth of 700 im.

System performance is evaluated using folding depths 350 mi. 700 m, and 2100 i in thle

estimator. r-iguic 12 shows the depth dependenICIt variability cuir vs at diff'erenlt folding

depths. The1 estimator and thc simulated occan both usc aii average value based on

these curves for each lMyer of thle discretizcd ocean.

A longer folding depth used in the estinmator implies thle system expects greater var-

izability in the unknown field at depth. We define the half-depth, "'0Z5, as the percent
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of the ocean measured from the surface which contains 50% of the integrated variability

over the ocean depth. It is expressed as

P62.5 -7- [nO.5 + 0.5e "f) OWO (3.4)

wheref is the folding depth and z.., = -3000 m, is the bottom depth. Note that we have

definedf so that it is positive in our application here, that isf> 0 implies variability with

depth decreases. However. z... is negative to be consistent with our upward pointing

positive z-axis with z = 0 m at the surface. It is interesting to note that the half-depth

depends only on the folding depth and ocean depth, but not on the surface value. This

allows us to make comparisons between the two areas of tomography.

In Ficure 13a. we show the top three layers of a simulated sound speed perturbation

field using the VIL approach. Figures 13b, 13c, and 13d show the corresponding esti-

mated fields based on folding depths of 500 m, 1000 m, and 3000 m, respectively. The

simulated field has %0'Z. = 21.5o, or half of the integrated variability is contained in

approximately the top fifth of the ocean. An estimator using a folding depth at 500 m

expects half of the integrated variability to be contained in roughly the top 10% of the

ocean. As the acoustic signal passes through lower regions of the ocean, the signal en-

counters higher variability than the estimator expects. The estimator interprets this
"energetic" data as the result of more intense structures in the upper ocean than are truly

present. The solution is constructed accordingly. The opposite effect occurs when the

assumed folding depth is larger than the true value. With f = 3000 m. the estimator

assumes the ocean contains half the variability in the top 40% of the ocean and tends

to smooth the variability over greater depths than found in the true solution.

We have made the assumption that variability is an exponential distribution. Under

these conditions, the estimator is more sensitive to underestimating the folding depth

than overestimating it. Figure 14 shows the relationship betweenfand %Z.. The slope

of the curve indicates system sensitivity. For a given folding depth, the slope is greater

when the assumed value is less than the true folding depth. indicating the system's in-

creased sensitivity to underestimation. Since the sensitivity measured by %VZ, is de-

pendent only on folding depth and ocean depth, we can also see from Figure 14 that

when true folding depths are small, the system is more sensitive to both underestimation

and overestimation than when the true folding depth is large.

For current tomography, we find a similar trend. Figure 15a shows a simulated

current field in the top three layers of the ocean. Figures 15b, 15c, and 15d show the
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corresponding estimates based on folding depths of 350 m, 700 m, and 2100 m, respec-

tivcly. As in our density tomography, the cstimator is more sensitive to underestimating

the folding depth than overestimating.

These results of these sensitivity studies are based on the assumption that the true

variability distribution is an exponentially decreasing function with depth. If the dis-

tribution is - ficantly different from this, our results may not apply, however, the

variation of the half-dcpth as a function or sonic other applicable parameter may still

be a useful measure of sensitivity.
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IV. PRELIMINARY INVERSIONS USING GREENLAND SEA DATA

The discussions from the previous chapters have given us insight into the expected
system performance in the Greenland Sea environment. However, the use of simulated

oceans cannot explore every aspect of system performance. Only using actual data from
the tomographic array can disclose the extent of success the system will have as an ocean

monitoring tool.
At present. a set of travel time measurements from transmissions between Mooring

4 and Mooring 5 has been processed for our analysis by WHOI. Acoustic signals were
transmitted six times a day on ever" third day starting in late September. 1988, and

ending in late July, 19S9. covering the winter cooling season. The complete set of data
for transmissions from Mooring 4 to Mooring 5 is used in our preliminary study. The
quality control "goodness estimates" of some data are. however, less than optimal. In

future studies, a criterion for the minimum acceptable goodness estimate may be set.
For our preliminary studyx we use for each ray an average of all six transmissions to
determine the travel time of the day. The data indicate three bundles of eigenrays were
resolved from signal processing at WIO1. We will make refecrence to each bundle by the

magnitude of its nominal receiving angle, "ihe bundles consist of four rays at 13, four
rays at 100. and one ray at 0'. Using a sound speed profile based on CTID taken near
the center mooring, our ray tracing algorithm predicts four eigenray path near I 3°and

four paths near 9' which we use for our data inversion. Since the algorithm fails at
shallow angles, the 0° ray path is constructed by an alternate method. We trace an axial
path along the minimum sound speed axis, which is located approximately 30 ni above
the source depth. The sound speeds at the source and receiver depths are less than .3

m s greater than the minimum sound speed of the reference profile. We feel this is a
good approximation for the 0* ray since WHIOI identified this arrival by using the last
signal peak which was very much bigger than noise (l'awlowicz,1991). To display our
results, we have taken a vertical slice in y-range as shown in figure 16a. This slice con-
tains Mooring 4 and Mooring 5. The selected eigenray paths, projected onto the vertical

slice, are shown in in figure 16b.
To evaluate system performance and analyse the data, we divide the ocean volume

into 500 boxes using the VTL layering scheme described in Chapter Il1. Using this
scheme, the source at .Mooring 4 is in the top ocean layer where 4Skm -__ x< 72kin, while
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the receiver at Mooring 5 is in the second layer from the top where

168ki < x 5 192ki We set the a priori knowledge for the estimator as shown in Table

Table 3. SYSTEM PARAMETERS

Assuned
Parameter Value

Surface R.MS 6c 6 m s

Folding Depth 1000 In

Random Noise I ms

Correlation Length (x.y) 30 km

Correlation Length (z) 300 m

Once the system parameters are established, the estimator's performance may be evalu-

ated.

Figure 17 displays the resolution kernel peak values. The resolution of the system

is highest in the vicinity of the moorings since this is where the three sets of rays con-

verge. The higher resolution in the upper 1000 meters is due to the exponential distrib-

ution of variability and path length contributions from both the 10° and 13° rays in this

region.

Another measure of sy'stem resolution is the minimum resolution length. As shown

in figure 18. the minimum resolution length in the y direction is about 60 km near the

top center portion of the vertical slice and near the source and receiver sites, and in-

creases rapidly where there are few or no eigenray paths. The relatively low values are

due to the convergence of all three ray groups in these regions. Ocean features smaller

than the ninimum resolution length are not adequately resolved and will appear

smoothed in the estimate. That is, we expect the estimator to generate less intense and

more spread out features than the true structure if the true solution has a length scale

less than the resolution length at its location. Since we are using a two point system

which has a north-south (y-direction) orientation, there is virtually no resolution of fea-

tures in the x-direction. As more data become available from other moorings, the esti-

mator will gain more information in all dimensions. Figure 19 shows the vertical

minimum resolution length which also tends to be lowest where the three groups of rays
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Figure 17. Resolution Kernel Peak Values for Greenland Sea Data Inversion: A

value of 1.0 implies a box is well resolved.

converge. However, it is interesting to note the unusually large minimum resolution

length of 1700 ni in the top center or the slice. It appears to be an anomalous feature

caused by the arbitrary choice of the the coordinate system. The exact cause of this lo-
cally high value, however, needs further investigation.
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Figure 20. Percent RMS Error

Sea, however, model errors in mooring positioning and in travel time calculations from
our ray theory based algorithm may also contribute significantly to the differences.
Based on receiving angles and sound speed data taken at the mooring sites, we have a

high degree of confidence in the positioning of the ray paths within the discretized boxes.
Even in a worst case scenario, the 200-300 millisecond differences would imply less than

500 meter differences in corresponding path lengths over total path lengths in excess of
120 ki. These dii Trences will not affiect the linear operator of the estimator greatly.

Errors in travel time calculations even as low as tens of milliseconds. however, ma,
contribute significant errors in the estimates since they are treated by the estimator as
part of the data. The scale of 6T in the Greenland Sea is on the order of tens of milli-
seconds, based on differences between daily travel times and the averaged travel time of
each of the rays. Though we cannot eliminate these errors, we can separate the errors
from our time series of estimates by basing the travel time perturbations on the time
averaged ocean. By choosing the time averaged ocean as our refcrence state, we can
observe the response of the estimator over the winter cooling seasoi, without superim-
posing the effects of model travel time errors. The structure of the time averaged ocean
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is not known, however, and may have range dependent features of interest. We can find

this structure with respect to the known sound speed structure used to predict our ray

paths by inverting the travel time differences between corresponding rays of the model

ocean and the time averaged data from the real ocean. From this information, we can

find the sound speed structure of the Greenland Sea.

Figure 21 shows the estimated 6c field of the time averaged ocean referenced to the

ocean used to predict our ray paths. To produce this field, we increased the horizontal

correlation lengths of the estimator to 100 km based on the expectation that the time

averaged ocean is more highly correlated than any of the daily perturbation fields we

estimate. The solution shows a reasonable trend. The time averaged ocean is expected

to be cooler in the upper ocean since the ocean used for ray prediction is based on a

profile taken in September. a relatively warm time in our data collection period. How-

ever, the accuracy of the predicted structure is affected by travel time errors from the ray

tracing algorithm and mooring positioning in the model. An independent source of data

is needed to verify," the extent of the effects, but positioning errors may be reduced as

more data sets of the array are included.

Once the system produces the first estimated perturbation field, there is little in-

crease in computational effort to generate a time series of solutions using the same esti-

mator. To demonstrate the response of the estimator using the Greenland Sea data from

WHOL. we plot a time series of the average 6c based on the top two model layers at the

position of Mooring 4 and Mooring 5. The time series are shown in Figures 22a and

23a respectively. The general "spikiness" of the plots is the result of having a two point

system which bases solutions on only three groups of eigenrays. It is difficult for the

estimator to precisely position features with so little information. The features appear

to move more abruptly in sequential solutions than could be physically be expected, in-

dicating instability of the solutions. The inclusion of data from other moorings will in-

crease the estimator's knowledge of the structures in the vicinity of Moorings 4 and 5,

and the solutions are expected to show greater stability over time. However, even with

instability affecting the short term solution, there are indications of trends at longer time

scales detected. The seasonal cooling and warming through the fall, winter, spring and

early summer time frame are evident at both moorings. Since sound speed is directly

related to temperature (Mackenzie,198 1), bc decreases with winter cooling and increases

with spring and summer warming. Events at the 20-90 day scale are extracted from the

time series by applying a time domain filter with cutoff frequency .05 cycles day at each

41



-9.00

o .. _.. , ...... .,... 00---. ,, .
----- ----- - . . . . . . -- . . . . . . . 9" 3 )0 : . . . . . . . .

-.. .. . . 3 . 0 0-
too@ ........................... " . 0

25000

£ IO

00

a,..

3088 I I . I I , I Il

0 24 40 72 96 120 144 169 192 216 240

rnpge (kn)

Figure 21. Sound Speed Perturbations of the Tine Averaged Ocean (in/s): The

sound speed structure of the time averaged ocean is the sum of this field

and the sound speed structure of the ocean used to predicted eigenray

paths.

of the point estimates. The time series of the filtered solutions near Moorings 4 and 5

are shown below their respective unfiltered versions in Figures 22b and 23b.

Environmental temperature data taken at Moorings 4 and 5 sitcs at a depth of 100

meters has been provided by WIO and are displayed in Figures 22c and 23c. Com-

paring the filtered Sc estimates to the respective temperature data provides evidence that

the two point tomographic system is detecting synoptic scale events. Mooring 5 partic-

ularly shows good coirelation between tempcrature and the local (Sc estimates. Of pe-
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cific interest are the detection at Mooring 5 of the strong cooling event near yearday 360
and the corresponding responses to wvarnmg and cooling from y-carday 390 to about

yearday 560.
As an example of svstcmn output, a sequence of seven 6c fields covering a three week

period from yeardays 462 to 480 at three day intervals is displayed in Figures 24-30. The
temperature record at Mlooring 5 indicated that a strong warming event followed by a

strong cooling event occurred during this period while a weaker pair of warm-ing and
cooling events occurred near Mooring 4. The output of the estimator is consistent with

the temperature data and reflects these trends.
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Figure 24. Sound Speed Perturbation Estimiates (m/s), Yearday 462
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V. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we discussed the advantages and problems of using a ray theory based

algorithm to establish the forward problem, developed an inversion code which could
be applied to Greenland Sea data, and tested this code using available Greenland Sea

data. Here we offer some conclusions and recommendations for further study in this

area.

A. CONCLUSIONS

First. we looked at the advantages and problems associated with using an algorithm
based on ray theory to model eigenray paths for the Greenland Sea tomography array.

Ray theory provides a simple depiction of eigenrays paths and the algorithm is coded

with uncomplicated mathematics. lowever, CTD data from this area shows an acous-

tically difficult enviroment may exist at least during part of the year and degrade tile

reliability of the predicted eigenray paths. Strong gradients and rapidly changing gradi-

ents in the vicinity of the transceiver elements can strongly affect model output. Rays

which are predicted to be turned in the gradient or near the sharp change in gradient arc

strongly influenced by small changes in the sound speed profile in this region. These

significant differences reduce the reliability of the resulting ray path. The algorithm of-

ten fails when predicting paths for rays launched at shallow angles. Rays launched at
steeper angles pass through these regions at greater angles and are less affected. These

ray paths are more reliable.

Data prepared by WHOI indicates resolvable eigenrays between Mooring 4 and

Mooring 5 are at large enough launch angles that they are not turned in the sharp gra-
dient. Thus. our algorithm is adequate to model the forward problem in this environ-

ment.

In our inversion code development, we investigated the effects of using variable
thickness layers vice an equally spaced scheme to discretize the Greenland Sea for the

estimator. Using thinner layers in the upper ocean and thicker layers in the lower ocean,

we kept the total number of boxes the same. The advantages of using this scheme is that

it provides more solution detail in the region of interest for the same computational ef-

fort. However, since the thick lower layers contain greater path length in this layering

scheme, system resolution shifts toward the lower ocean. However, by specifying a

depth dependent variability in the covariance of the unknown field, we tell the estimator
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to expect greater variability in the upper ocean. As a result of this modification, system
resolution shifts back towards the upper ocean. For our purposes. we have modeled the

depth dependent variability as an exponentially deceasing function with depth. If more
accurate information is known, it could just as easily be used.

Since the true variability may not be known, we investigated model sensitivity to

uncertainty in variability distribution. Using an exponentially shaped variability dis-

tribution as our basis, we looked at the effects of underestimating and overestimating the

characteristic folding depth of the distribution. Defining the half-depth as the percent
of the ocean measured from the surface which contains 50% of the integrated variability,
we have an objective means of measuring sensitivity. The half-depth gives us an idea

of how the estimator is distributing variability in the ocean. We have shown the change
in half-depth per unit change in folding dcpth is always greater when the true folding

depth is underestimated. We have also shown from the same relationship that at smaller
true folding depths. the model is more sensitive to both underestimation and over esti-

mation. Hialf-depths relationships can bc developed for other variability distributions

and applied in similar ways to measure model sensitivity.

Our inversion method was tested by using available data flrom the Greenland Sea

array as input to our model. The system used nine eigenray paths between the source

at Mooring 4 and the receiver at Mooring .5. The results of our preliminary application

of the model show evidence of detection of the seasonal cooling cycle and detection of

synoptic scale events at time scales of 20-90 days. The two point system also shows

unrealistically large fluctuations in the solutions at periods of less than 20 days. This
indicates instablility of the solutions, however, we expect stability to increase as more
data becomes available from other moorings.

Our acoustic tomography code is ready fbr application to Greenland Sea data. The
estimator can provide concentrated estimates in the region of interest and allows for a

depth dependent variability distribution of the unknown variable. With these modifica-
tions, our model can use tomographic data to monitor changes in ocean structure.

B. RECOMMENDATIONS
CTD data has shown that the near surface structure of the Greenland Sea is chal-

lenging to model acoustically. Though our ray theory based algorithm seems adequate

for our purposes here, the combination of the near surface gradients and transceiver lo-

cation make this algorithm less than ideal. However, the convenience of using a ray

theory based algorithm to model the lower ocean stills keeps it an attractive basis for
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sound propagation prediction. We recommend that a more accurate means of estab.

lishing the Forward problem in the Greenland Sea be investigated, perhaps using a hybrid

of ray theory and normal modes.

Based on the promising results using just a two point system, continued analysis of

the Greenland Sea using this code and data from the remaining 14 mooring paths of the

deployed array should yield useful estimates of ocean circulation and be able to detect

large scale convective events.
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